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Abstract In this paper, the stable trajectory of Logis-
tic Map has been investigated by canonical duality
theory from the perspective of global optimization.
Numerical result of our method shows that it totally dif-
fers from traditional chaotic solution solved by Euler
method. In addition, we have applied our method to
three well-known standard benchmarks in global opti-
mization. Numerical simulations are given to illustrate
the effectiveness of the main results.

Keywords Logistic map · Duality ·
Global optimization

1 Introduction

Chaotic behavior widely exists in a large category of
dynamical systems which are highly sensitive to ini-
tial conditions (see [1–4]). Small differences in ini-
tial conditions, which typically are raised by rounding
errors in numerical computation, obtain totally diverg-
ing outcomes for chaotic systems even running the
same code [5,6]. From the perspective of numerical
analysis, discretization error origins from all the con-
tinuous functions are approximated in a computer by
a finite number of evaluations [7]. In numerical simu-
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School of Science, Information Technology
and Engineering, University of Ballarat,
Mt Helen, VIC 3350, Australia
e-mail: tiezhongyu2005@126.com

lation of the ordinary differential equation, discretiza-
tion error can usually be reduced using a more compli-
cated algorithm with an increasing computational cost,
such as the fourth-order Runge–Kutta method. The
approximate analytical chaotic solutions of nonlinear
differential equations governing the high-dimensional
dynamic system can be derived from a differential con-
trol method (DCM) [8]. However, each of tiny dis-
cretization error involved in each iterative step would
be gradually accumulated and finally make significant
contributions on chaotic behavior. Estimating model
parameters based on chaotic system is becoming chal-
lenging due to sensitive dependence to initial condi-
tions. By introducing a smooth function, the authors
[9] admits a well-defined maximum, which is equiva-
lent to maximum likelihood estimates. In addition, the
Taguchi-sliding-based differential evolution algorithm
(TSBDEA) has been developed to solve the problem
of system identification for typical chaotic systems, in
which a global optimization method combined with
the differential evolution algorithm (DEA) is proposed
in [10]. Other chaos detection and parameter identifi-
cation have been discussed by the authors [11] until
recently.

In terms of a least-squares minimization procedure,
Neuberger and Renka [12] have investigated the dif-
ference between chaotic dynamics and chaotic behav-
ior of continuous dynamical system, particularly, the
well-known Lorenz attractor. The result indicates that,
to some extent, chaotic behavior is purely an artifact
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210 C. Li et al.

of numerical roundoff and discretization error by a
step-by-step method. Aiming at clarifying the differ-
ence between chaotic dynamics and chaotic behavior,
we consider the dynamical behaviors of Logistic Map
which is described by the following difference equa-
tion:

xk = f (xk−1), k = 1, 2, . . . , n, (1)

where xk is a real number between zero and one, which
represents the ratio of existing population to the max-
imum possible population at year k, and hence x0

implies the initial ratio of population to maximal pop-
ulation. f (x) = r x(1 − x) and r is a positive num-
ber, which represents a combined rate for reproduction
and starvation. Apparently, discretization error does
not exist in difference equation. In [13], the authors
introduce randomness in the construction of S-boxes
and synthesize substitution boxes by the use of chaotic
logistic maps in linear fractional transformation.

Correspondingly, the least-squares minimization of
numerical roundoff error can be formulated as follows:

P(x) = 1

2

n∑

k=1

‖xk − r xk−1 (1− xk−1) ‖2. (2)

We transform dynamical system problem into a
least-squares-like problem in terms of global optimiza-
tion sense. Nonlinear least-squares problem has been
discussed for several decades due to its application
in science and engineering. For example, an adap-
tive fuzzy control for a class of discrete-time chaotic
systems has been proposed in paper [14], where the
parameters of a fuzzy controller law are identified by
the least-squares method with dead zone. Meanwhile,
canonical duality theory was first developed from Gao
and Strang’s original work [15] on nonconvex vari-
ational problems in large deformation theory, which
has been used successfully for solving some interest-
ing nonconvex optimization problems in various dis-
ciplines (see, for example, [16–18]). In this paper, we
devise an effective solution method based on the canon-
ical duality theory to solve problem (2) and apply it
for solving some well-known fourth-order polynomial
optimization problems.

The rest of this paper is organized as follows. In the
next section, we briefly introduce the canonical duality
theory. In Sect. 3, we rewrite the original problem to a

new problem, where the decision matrix is expressed
in the form of vector. We use the canonical dual trans-
formation to construct the canonical dual problem; the
form of analytical solution is obtained from the criti-
cality condition in Sect. 4. Then, we apply our method
for solving fourth-order polynomial optimization prob-
lems. Finally, some concluding remarks are given in the
last section.

2 A brief review of canonical duality theory

Let us consider the following general polynomial opti-
mization problem (primal problem)

(P) : min
x∈Rn

{
P(x) = 1

2
xT Ax − xT f +W (x)

}
, (3)

where A ∈ R
n×n is a given symmetrical indefinite

matrix, f ∈ R
n is a given vector, and W (x) : Rn → R

is a general nonconvex C2 function.
In terms of canonical duality theory, we firstly intro-

duce a nonlinear operator (a Gâteaux differentiable
geometrical measure)

ξ = �(x) : Rn → Ea ⊂ R
m (4)

and a convex function V : Ea → R such that W (x)

can be recast by W (x) = V (�(x)). Then the primal
problem can be rewritten as the canonical form:

min
x∈Rn

{
P(x) = V (�(x))−U (x)

}
, (5)

where U (x) = − 1
2 xT Ax + xT f . The dual variable ς

to ξ is defined by the duality mapping

ς = ∇V (ξ) : Ea → E∗a ⊂ R
m, (6)

which should be invertible, due to the convexity of
V (ξ). Then the Legendre conjugate V ∗(ς) of V (ξ) can
be uniquely defined by the Legendre transformation

V ∗(ς) = sta{ξ T ς − V (ξ)|ξ ∈ Ea} (7)

and the following canonical duality relations hold on
Ea × E∗a :

ς = ∇V (ξ)⇔ ξ = ∇V ∗(ς)⇔ V (ξ)+ V ∗(ς)

= ξ T ς . (8)

Replacing W (x) = V (�(x)) by �(x)T ς−V ∗(ς), we
obtain the following total complementary function:

�(x, ς) = �(x)T ς − V ∗(ς)−U (x) : Rn × E∗a
→ R. (9)
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Stable trajectory of logistic map 211

Using the total complementary function, the canonical
dual function Pd(ς) can be formulated as

Pd(ς) = sta{�(x, ς)|x ∈ R
n} = U�(ς)− V ∗(ς),

(10)

where U�(ς) is defined by

U�(ς) = sta{�(x)T ς −U (x)|x ∈ R
n}. (11)

Let Sa ⊂ E∗a be a dual feasible space such that
U�(ς) is well-defined, and the canonical dual prob-
lem can be obtained as

(Pd) : sta{Pd(ς)|ς ∈ Sa}. (12)

Theorem 1 (Complementary-dual principle)[16] The
problem (Pd) is canonically dual to the primal problem
(P) in the sense that if (x̄, ς̄) is a critical point of
�(x, ς), then x̄ is a feasible solution of (P), ς̄ is a
feasible solution of (Pd), and

P(x̄) = �(x̄, ς̄) = Pd(ς̄). (13)

In this paper, the geometrical operator �(x) is
intrinsically quadratic

�(x) = {1
2

xT Ck x + xT bk} : Rn → Ea ⊂ R
m, (14)

where Ck ∈ R
n×n and bk ∈ R

n are given. In this case,
the canonical dual function can be formulated in the
form of

Pd(ς) = −1

2
FT (ς)G−1(ς)F(ς)− V ∗(ς), (15)

which is well defined on

Sa = {ς ∈ R
m |F(ς) ∈ Col(G(ς))}, (16)

where G(ς) = A + ∑m
k=1 ςkCk, F(ς) = f −∑m

k=1 ςk bk , and Col(G(ς)) denotes the column space
of G(ς).

Let the positive domain

S+a = {ς ∈ Sa |G(ς) 	 0}, (17)

where G(ς) 	 0 indicates that G(ς) is a positive semi-
definite matrix.

Theorem 2 (Global optimality condition)[16] Sup-
pose ς̄ is a critical point of Pd and x̄ = G−1(ς̄)F(ς̄).
If ς̄ ∈ S+a , then ς̄ is a global maximizer of (Pd) on S+a
if and only if x̄ is a global minimizer of (P) on R

n, i.e.,

P(x̄) = min
x∈Rn

P(x)⇔ max
ς∈S+a

Pd(ς) = Pd(ς̄). (18)

3 Logistic map

In this section, we discuss about the dynamical behav-
ior of Logistic Map in terms of canonical duality theory
from the perspective of global optimization. As usual,
one has the perturbed objective function with initial
condition x0:

Pε(x) = 1

2

{
(x1 − M)2 +

n−1∑

k=1

εk

[
r x2

k − r xk + xk+1

]2

−
n−1∑

k=1

ρk x2
k −

n−1∑

k=1

ηk xk

}

=1

2

{ n−1∑

k=1

εk

[
1

2
xT Ak x − BT

k x
]2

− 1

2
xT Qx − DT x + E

}
. (19)

where x = [x1, x2, . . . , xn]T , Q = diag(2(ρ1 −
1), 2ρ2, . . . , 2ρn−1, 0), D = [2M + η1, η2, . . . , ηn−1,

0]T , E = M2, M = r x0 − r x2
0 ,

Ak=

⎛

⎜⎜⎜⎜⎝

0
· · ·

2r ← k
· · ·

0

⎞

⎟⎟⎟⎟⎠

n×n

, Bk=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
· · ·
0

r ← k
−1← k + 1
· · ·
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×1

.

Let ξk = ε
1
2
k ( 1

2 xT Ak x−BT
k x) (k = 1, 2, . . . , n−

1), we have

V (ξ) =
n−1∑

k=1

ξ2
k , (20)

ς = ∂ξ V (ξ) = 2ξ , (21)

V ∗(ς) = ξ T ς − V (ξ) = 1

4
ςT ς . (22)

According to (6)–(9), the total complementary function
can be defined as

�(x, ς) =
n−1∑

k=1

ε
1
2
k (

1

2
xT Ak x − BT

k x)ςk − 1

4

n−1∑

k=1

ς2
k

−1

2
xT Qx − DT x + E

= 1

2
xT

[
n−1∑

k=1

ε
1
2
k Akςk − Q

]
x
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212 C. Li et al.

−
[

n−1∑

k=1

ε
1
2
k BT

k ςk + DT

]
x+E−1

4

n−1∑

k=1

ς2
k .

(23)

From the critical point of ∇�(x, ς),

x = G−1(ς)F(ς), (24)

where

G(ς) =
n−1∑

k=1

ε
1
2
k Akςk − Q, (25)

F(ς) =
n−1∑

k=1

ε
1
2
k BT

k ςk + DT . (26)

Substituting (24) into the total complementary func-
tion �(x, ς), each of canonical dual problem can be
formalized

φ1(ς) = −1

4

⎧
⎨

⎩
(2M + η1 + aε

1
2
1 ς1)

2

aε
1
2
1 ς1 − ρ1 + 1

+ ς2
1

⎫
⎬

⎭ , (27)

φn−2(ς)=−1

4

⎧
⎨

⎩
(ηn−2+aε

1
2
n−2ςn−2−ε

1
2
n−3ςn−3)

2

aε
1
2
n−2ςn−2−ρn−2

+ς2
n−2

⎫
⎬

⎭,

(28)

φn−1(ς) = 1

4

⎧
⎨

⎩
(ηn−1 − ε

1
2
n−2ςn−2)

2

ρn−1

⎫
⎬

⎭+ E . (29)

The canonical dual problem can be finally formulated
as

Pd(ς) =: sta

{
n−1∑

k=1

φk(ς)

}
, (30)

for any ςk ∈ Sa .

Example 1 Consider logistic map with n = 200 as the
following least-squares minimization problem

P(x) = 1

2

200∑

k=1

‖xk − r xk−1 (1− xk−1) ‖2, (31)

where x0 = 0.15 and r = 4. Let εk = 1× 10−6, ρk =
1 × 10−6, and ηk = 0, one has the global mini-
mum P(x) = 1.491402 × 10−7 solved by L-BFGS-
B method [19]. Compared to the traditional iterative
method, the trajectory of global optimization method
turns out to be a stable path convergence to the equi-
librium of Logistic map, see details in Fig. 1.

4 Applications

In this section, we will discuss three problems related
with the proposed approach for Logistic Map. All these
problems can be regarded as nonlinear least-squares
functions, which are well known as standard bench-
marks for global optimization algorithms as well as
heuristic methods.

4.1 Rosenbrock function

First of all, consider the standard Rosenbrock Function
problem

f (x) =
n∑

i=1

[
(xi − 1)2 + 100(xi+1 − x2

i )2
]
. (32)

Mathematically speaking, the Rosenbrock function is
a nonconvex function and called Rosenbrock’s banana,
in which the global minimum is inside a long, narrow,
parabolic shaped flat valley. For small n, the polynomi-
als optimization problem can be determined exactly as
well as the number of real roots in terms of Sturm’s the-
orem, while all roots can be bounded in the |xi | ≤ 2.4
[20]. However, the case n changes into a large scale, for
example n > 1,000, this method breaks down due to
the large size of the coefficients involved. Fortunately,
this problem can be tackled analytically by canonical
dual theory and the global solution can be obtained
within given tolerance.

Let ξ = �(x), then

ξ = {ξk} = ε
1
2
k (x2

k − xk+1) ∈ ξa ⊂ R
n−1, (33)

V (ξ) = 100
n−1∑

k=1

ξ2
k , (34)

and the duality relation

ς = {ςk} =
{

∂V (ξ)

∂ξk

}
= {200ξk}. (35)

Thus,

ξk = 1

200
ςk . (36)
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Fig. 1 Chaotic trajectory versus stable trajectory (200 iterations)

We have

V ∗k (ςk) = ξkςk − Vk(ξk)

= ξkςk − 100ξ2
k

= 1

400
ς2

k . (37)

According to (6)–(9), the total complementary function
can be defined as

�(x, ς) =
n−1∑

k=1

(xi − 1)2 +�(x)T ς − V ∗(ς)

=
n−1∑

k=1

[
(xk − 1)2 + ε

1
2
k (x2

k − xk+1)ςk

− 1

400
ς2

k

]
, (38)

with the canonical dual feasible space Sa ⊂ R
n−1

defined by

Sa =
{
ς ∈ S | ε

1
2
k ςk + 1 �= 0,

∀k = 1, . . . , n − 2, ςn−1 = 0
}
. (39)

For a fixed ς , the criticality condition ∇x�(x, ς) = 0
leads to the solution of the canonical equilibrium equa-
tion, which can be uniquely determined as

xk =
ε

1
2
k−1ςk−1 + 2

2(ε
1
2
k ςk + 1)

. (40)

Substituting this result (40) into the total comple-
mentary function �(x, ς), the canonical dual problem
can be finally formulated as
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Fig. 2 The portrayal of dual problem with respect to ς1

Pd(ς)

=: sta

⎧
⎨

⎩n−1−
n−1∑

k=1

⎡

⎣ (ε
1
2
k−1ςk−1 + 2)2

4(ε
1
2
k ςk + 1)

+ 1

400
ς2

k

⎤

⎦

⎫
⎬

⎭ ,

(41)

for any ςk ∈ Sa .

Example 2 Consider the typical Rosenbrock function
with n = 3 as the following

f (x) = (x1 − 1)2 + 100(x2 − x2
1 )2 + (x2 − 1)2

+100(x3 − x2
2 )2.

Correspondingly, its dual problem is given

Pd(ς) =: sta

{
2−

[
1

(ς1 + 1)
+ 1

400
ς2

1 +
(ς1 + 2)2

4

]}
,

where ς1 = 200(x2
1 − x2) and ς2 = 200(x2

2 − x3). In
this case, the dual problem has a unique critical point
ς = (0, 0) in this space

S+a =
{
ς ∈ S | ε

1
2
1 ς1 ≥ −1, ς2 = 0

}
,

which coincides with the graph of dual function, see
details in Fig. 2.

Therefore, x of primal function is given by (40)

x∗ =
[

1

ς1 + 1
,

ς1 + 2

2(ς2 + 1)
, x2

2

]

= [1, 1, 1] ,

is a global minimization.

Table 1 Numerical results of Rosenbrock function with differ-
ent n

n P(x∗) Pd (ς∗)

4,000 3.338215e−10 1.41049e−10

6,000 7.544455e−09 1.662183e−09

8,000 5.249997e−10 2.340217e−10

1,0000 3.169148e−09 6.554447e−10

Example 3 Consider the large-scale Rosenbrock func-
tions with n= 4,000, 6,000, 8,000, and 10,000. Simi-
larly, by employing L-BFGS-B method and randomly
generating initial values on the interval (−1, 10], the
numerical results are given in Table 1.

4.2 Dixon and Price function

Consider Dixon and Price function

f (x) = (x1 − 1)2 +
n∑

i=2

i(2x2
i − xi−1)

2, (42)

which is a fourth-order polynomial optimization prob-
lem without constraint. The global minimum of this

problem is xi = 2
λ−1
λ (λ = 2i−1) and f (x∗) = 0 which

means limi→∞ xi = 1
2 . In fact, there are two global

minimizers that can be obtained analytically by canon-
ical dual theory.

Consider the perturbed function as follows

Pε(x) = (x1 − 1)2 +
n∑

k=2

kεk(2x2
k − xk−1)

2

−
n∑

k=1

ρk x2
k −

n∑

k=1

ηk xk

=
n∑

k=2

kεk(
1

2
xT Ak x−BT

k x)2

− 1

2
xT Qx−DT x+E, (43)

where Ak = diag{0, . . . , 4, . . . 0}; Bk = [1, 0, . . . ,

0]T ; Q = diag{2(ρ1 − 1), 2ρ2, . . .}; D = diag{2 +
η1, η2, . . .}; and E = 1.

Let ξk = (kεk)
1
2 ( 1

2 xT Ak x − BT
k x)(k = 2, 3, . . . ,

n), we have

V (ξ) =
n∑

k=2

ξ2
k , (44)
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ς = ∂ξ V (ξ) = 2ξ , (45)

V ∗(ς) = ξ T ς − V (ξ) = 1

4
ςT ς . (46)

According to (6)–(9), the total complementary function
can be defined as

�(x, ς) =
n∑

k=2

(kεk)
1
2 (

1

2
xT Ak x − BT

k x)ςk

−1

4

∑

k=2

nς2
k −

1

2
xT Qx − DT x + E

= 1

2
xT

[
n∑

k=2

(kεk)
1
2 Akςk − Q

]
x

+
[

n∑

k=2

(kεk)
1
2 BT

k ςk + DT

]
x + E

−1

4

n∑

k=2

ς2
k . (47)

From the critical point of ∇�(x, ς),

x = G−1(ς)F(ς), (48)

where

G(ς) =
n∑

k=2

(kεk)
1
2 Akςk − Q, (49)

F(ς) =
n∑

k=2

(kεk)
1
2 BT

k ςk + DT . (50)

Substituting (48) into the total complementary function
�(x, ς), each of the canonical dual problem can be
formalized

φ1(ς) = −1

2

[
2+ η1 + (2ε2)

1
2 ς2

]2

2(1− ρ1)
+ 1, (51)

φn−1(ς) = −1

2

[
ηn−1 + (nεn)

1
2 ςn

]2

4((n − 1)εn−1)
1
2 ςn−1 − 2ρn−1

−1

4
ς2

n−1, (52)

φn(ς) = −1

2

η2
n

4(nεn)
1
2 ςn − 2ρn

− 1

4
ς2

n . (53)

The canonical dual problem can be eventually for-
mulated as

Pd(ς) =: sta

{
n∑

k=1

φk(ς)

}
, (54)

for any ςk ∈ Sa .

Example 4 Consider the standard test function with
n = 2 as the following

f (x) = (x1 − 1)2 + 2(2x2
2 − x1)

2,

which is a large valley.
The corresponding dual function is given by

Pd(ς) =: sta

{
1− 1

4
(2+ 2

1
2 ς)2

}
,

where ς = 2
1
2 (2x2

2 − x1). From the aforementioned
approach, the critical point ς = 0 in this case. Hence,
the global minimums are given by

x∗ =
[

1+ ς,±
√

x1

2

]

=
[

1,±
√

2

2

]
.

Example 5 In this example, we discuss the case n =
3,000. Likewise, by employing L-BFGS-B method
and randomly generating initial values on the inter-
val [0, 10], numerical results of dual problem Pd(ς∗)=
7.0720e−6 are obtained. However, the results of the
primal problem by dual transformation P(x∗) =
0.6778 are unacceptable because the computation
errors caused by perturbation are accumulated into an
undeniable scale when n increases into a large size.
Thus, these results of the primal problem should be
regarded as new start points to be refined by gradient-
based optimization method. Finally, we have the refined
P(x∗)= 1.2704e−6. Remark that this procedure can be
iteratively repeated until the results are achieved at high
accuracy.

4.3 Powell function

Consider Powell function problem

f (x) =
n/4∑

i=1

[(x4i−3 + 10x4i−2)
2 + 5(x4i−1 − x4i )

2

+ (x4i−2 − x4i−1)
4 + 10(x4i−3 − x4i )

4],
(55)

which was introduced in 1962 by Powell as a singular
unconstrained optimization problem. Powell function
is a type of optimization problem which can be split into
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small size with respect to n. For each small independent
problem, standard starting point of numerical test is
x0 = (3,−1, 0, 1)T and the Hessian matrix at global
minimum is bi-singular. To solve it, we utilize proximal
point method to tackle it.

Let ξk = (x4k−2−x4k−1)
2 and εk = (x4k−3−x4k)

2,
we have

V (ξ) =
n/4∑

k=1

ξ2
k , (56)

ς = ∂ξ V (ξ) = 2ξ , (57)

V ∗(ς) = ξ T ς − V (ξ) = 1

4
ςT ς . (58)

V (ε) = 10
n/4∑

k=1

ε2
k , (59)

σ = ∂εV (ε) = 20ε, (60)

V ∗(σ ) = εT σ − V (ε) = 1

40
σ T σ . (61)

The total complementary function can be defined as

�(x, ς , σ )

=
n/4∑

k=1

[
(x4k−3 + 10x4k−2)

2 + 5(x4k−1 − x4k)
2

+ (x4k−2 − x4k−1)
2ςk + 10(x4k−3 − x4k)

2σk

− 1

4
ς2

k −
1

40
σ 2

k + ρk‖x − x∗‖2
]

=
n/4∑

k=1

[xT Gk x−2FT
k x− 1

4
ς2

k −
1

40
σ 2

k +ρk(x∗)2],

(62)

where x = [x4k−3, x4k−2, x4k−1, x4k]T is variable vec-
tor, ρk is a regularized parameter, and x∗ is the start
point for every small independent problem in each step
(see details in [21]),

Gk =⎡
⎢⎢⎢⎣

(1+10σk+ρk) 10 0 −10σk

10 (100+ςk+ρk) −ςk 0
0 −ςk (5+ςk+ρk) −5

−10σk 0 −5 (5+10σk+ρk)

⎤

⎥⎥⎥⎦

and

Fk =

⎡

⎢⎢⎣

−ρk

−ρk

−ρk

−ρk

⎤

⎥⎥⎦ .

From the critical point of ∇�(x, ς , σ ),

x = G−1
k Fk . (63)

The canonical dual problem of Powell singular function
can be formulated as

Pd(ς , σ ) =: sta
n∑

k=1

{
−FT

k G−1
k Fk − 1

4
ς2

k −
1

40
σ 2

k

}
,

(64)

for any ςk ∈ Sa . Note that ρk(x∗)2 is constant and
omitted here.

Example 6 Consider the standard test function with
n=4 as the following

f (x) = (x4 + 10x3)
2 + 5(x2 − x1)

2 + (x3 − x2)
4

+ 10(x4 − x1)
4. (65)

Let ρ = 1 × 10−4. The global minimizer can be
obtained immediately by the algorithm in [21], which is
x∗ = 1×10−8 × [0.0650 −0.0065 0.1534 0.1534].
All the experiments were run on a HP Pavilion G6 com-
puter with an Intel(R) Core(TM)I5-2430M 2.4GHz
processor and 4,00 GB of memory.

5 Conclusion

A new numerical method for dynamical system has
been discussed from the perspective of global optimiza-
tion in this paper. Compared to the chaotic behavior of
logistic map, a stable trajectory has been obtained in
terms of canonical dual theory. Some chaos from tra-
ditional numerical iteration of dynamical system, to
some extent, are artificial results caused by compu-
tation error, which should be differentiated by chaos
in physics. Besides, three least-squares-like functions
have been investigated by the proposed method. For
small size, the global minimizer can be obtained ana-
lytically. Numerical simulations show that our method
can achieve good performance even in a large-scale
problem. In further research, we will try to investigate
chaotic phenomena governed by differential equation
and determine the effect of computational errors.
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